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A. Flowchart for Applied Researchers

An experimenter’s decision to collect additional pre-treatment information needs to be

carefully considered on a case-by-case basis. We intend for this article to make the practical

and statistical components of this decision clear so a researcher is better equipped to consider

this design choice in their studies. To aid in the first steps of this process, in this section we

include a flowchart to summarize the advice and findings in the article that researchers can

consult.

The central question this article seeks to help researchers answer is whether they should

collect more pre-treatment information. How might this affect the competing components

of precision? Will collecting this information be beneficial to use for a blocking or pre-post

design? Or, will collecting this information require or lead to a smaller sample size, thus

harming the researcher’s ability to detect treatment effects?

Figure A1 presents a flowchart to help balance these competing concerns. The first ques-

tion posed is whether the researcher already has pre-treatment information that they can

incorporate in their design. Note that the left path indicating “Yes” uses dashed arrows and

boxes. This denotes the literature’s existing advice regarding the benefits of incorporating

pre-treatment information into a design. The right path indicating “No” is where this article

contends with the unclear state of advice in the literature, and unpacks how to consider the

benefits of alternative designs when they might simultaneously prompt sample loss.

Existing Advice in the Literature

First, consider the left path indicating “Yes,” the researcher has pre-treatment information.

For example, a cluster randomized design might randomly assign some classrooms to an

intervention and some to a placebo control. This researcher may already know prior test

scores, demographics, and more about these classes. Or, university labs may have an existing

participant pool with pre-collected demographic data.
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Continuing down this branch, the next pertinent question the researcher should ask themselves

is whether or not they are powered to detect their effects of interest. In this article, and in

most political science experiments, researchers are foremost interested in average treatment

effects. If the researcher is powered, they could use pre-treatment information to increase

their precision. Indeed, when researchers only have one shot at estimating treatment effects,

we advise they take every reasonable measure to increase precision in order to detect true

treatment effects. However, incorporating this information into the design may not affect

final conclusions about treatment effects of interest if the researcher is confident their tests

are powered.

If a researcher’s tests are not powered, we highly recommend they use the pre-treatment

information at their disposal. Using pre-treatment information (i.e., block randomization and

pre-post outcome measurement) could stand to greatly increase precision, and depending

on the predictiveness of the covariates, the precision gains could be substantial. Indeed, in

this context, there is no implicit sample loss to worry about – the pre-treatment information

is free so the researcher does not need to sacrifice sample size ex ante to pay to gather it.

Moreover, there is no explicit sample loss to worry about – the pre-treatment information is

already collected so the researcher does not need to worry about attrition during the study

as a result of collecting it.

Beyond Existing Advice

Now, consider right path of the flowchart, indicating that the researcher does not have

pre-treatment information. For example, a survey experiment conducted using participants

on Amazon’s Mechanical Turk would lack individual-level information about the participants

before fielding the study.

As before, continuing down this branch, the researcher should then consider if their tests are

powered. If the researcher is confident they have sufficient power, they could use pre-treatment
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information to increase their precision. However, the researcher needs to carefully consider

any possible implicit or explicit sample loss that may result from pursing the collection of

additional pre-treatment information.

We next consider what a researcher might do if they answer “No”, they are not powered

to detect effects of interest. It is critical the researcher consider any avenue available to

them prior to fielding their experiment to increase power. As we discuss in this article,

block randomization and pre-post designs are strongly encouraged in the literature with

promises to improve precision. Critically, the researcher needs pre-treatment information

about experimental units to implement these designs. The next box in the flowchart considers

the feasibility of collecting such information. We outline three common possibilities.

First, a researcher may not be able to collect pre-treatment information. For example, a

researcher may not have access to their sample prior to randomization. For a design like

Munger (2017) implements, the experimental intervention was randomly assigned in real

time when a user posted a racist Tweet. In this case, if a researcher lacks precision in their

estimates, they ought to consider other strategies to increase precision we discuss in the

article. The simplest strategy is to increase sample size as much as possible.

Finally, the flowchart considers the central question in this article—what a researcher should

consider when they feasibly could collect additional pre-treatment information and implement

alternative designs, like block randomization and pre-post measurement, to increase precision

in their estimates.

If it is feasibile, but it requires an additional pre-treatment wave, the researcher must consider

the possibility of both implicit and explicit sample loss. For example, D. Broockman and

Kalla (2016) implement a separate pre-treatment survey in their field experiment studying

the effects door-to-door canvassing can have on decreasing transphobia. It is possible that

they could have afforded more people in the experimental phase of the study, but implicitly

sacrificed sample size in order to collect pre-treatment information to use when estimating
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treatment effects (D. E. Broockman, Kalla, and Sekhon 2017). Moreover, explicit sample loss

is a major concern. Units will likely drop off between a pre-treatment wave and experimental

wave of a study. Another study may consider these competing components of precision and

decide the sample loss is not worth implementing these alternative designs that require pre-

treatment information. In sum, a researcher in this context (underpowered and questioning

whether to collect pre-treatment information) will have to carefully consider this decision. It

not be worth collecting this information because sample loss might be substantial and not

outweigh the design choices’ benefits. However, using pre-treatment information could stand

to greatly increase precision. Depending on the predictiveness of the covariates, it could make

the difference between being powered or underpowered, even if sample loss occurs.

Finally, we consider the last branch of the flowchart. In this instance, a researcher does

not need to implement a new pre-treatment wave. Instead, they can collect pre-treatment

information using the structure of their current design. For example, online survey experiments

that randomize participants to conditions within the survey can easily add additional pre-

treatment measures into the design. This context is not likely to feature large implicit or

explicit sample loss. Survey time may increase by adding pre-treatment questions, and a

researcher may not be able to afford as many units as a result (implicit loss), but if the

predictiveness of the covariates is high, precision gains are likely to withstand minor sample

loss. Moreover, it is unlikely that many units drop due to survey fatigue from a few added

pre-treatment questions. In this setting, it is fairly safe to assume that the precision gains

from incorporating pre-treatment information, and designs like block randomization and

pre-post measurement, are going to outweigh harms to precision from sample loss.
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Do you have pre-treatment information about units at the level of
randomization prior to the randomized component of your study?

Are you powered to detect
effects of interest?

Are you powered to detect
effects of interest?

Can you collect pre-treatment information?

. . . No

. . . No

You could use
pre-treatment

information, but
it is not likely to
affect treatment

effects conclusions.

. . . No

. . . No

You should use
pre-treatment
information. It
is “costless,” and
depending on its

predictiveness, could
help achieve power.

. . . Yes

. . . Yes

You could collect
pre-treatment
information,
but his may

introduce sample
loss, risking already

powered tests.

. . . Yes (a lot)

. . . Yes (a lot)

The effects of
collecting pre-

treatment informa-
tion on precision

depend on context.
Using predictive

covariates can help
power tests, but this
context risks sub-
stantial sample loss
which may undercut

these benefits.

. . . NA

. . . NA

You can’t use
pre-treatment
information, so
consider other

strategies to increase
precision, like in-

creasing sample size.

. . . Yes (a little)

. . . Yes (a little)

You probably should
collect pre-treatment

information. In-
creases in precision
from predictive

covariates can likely
outweigh harms
to precision from
sample loss, which
is not likely to be

high in this context.

Possible implicit sample loss?. . .
Possible explicit sample loss?. . .

Yes No

No

Yes No Yes No
Yes, with an added
pre-treatment wave

Yes, in the
current design

Figure A1: First Steps in Considering How Alternative Designs Balance Precision and Retention
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B. An Example of Balancing Precision and Retention

when Blocking

In this Appendix, we use a toy example to illustrate how a block randomized design may

be a beneficial design choice in terms of increased precision in ÂTE. Consider the schedule

of potential outcomes for eight units outlined in Table B1. Under the standard design,

V ar(Yi(0)) = 1.25, V ar(Yi(1)) = 4.25, Cov(Yi(0), Yi(1)) = 2.25, and N = 8. Using these

inputs to the standard error formula, SE(ÂTE) = 1.19.

Table B1: Schedule of potential outcomes

ID Block Yi(0) Yi(1)
1 1 1 4
2 1 2 5
3 1 1 4
4 1 2 5
5 2 3 8
6 2 4 9
7 2 3 8
8 2 4 9

Note: Rows shaded
in gray drop under block
randomization.

Now consider the tension between improving precision with block randomization in the face

of potential sample loss. Assume the researcher has good reason to believe units 1-4 and

units 5-8 have similar potential outcomes and therefore would make good blocks. We have

labeled the observations accordingly. However, assume that in making the choice to use

block randomization, the researcher loses units, denoted by the rows shaded gray in Table

2.1 Calculating SE(ÂTEBlock) will allow us to determine if reducing variation in potential

outcomes is worth the loss of sample.
1V ar(Yi(0)), V ar(Yi(1)), and Cov(Yi(0), Yi(1)) for the N = 4 sample are identical to the full N = 8

sample so we can compare the effects of sample size loss to gains in precision from block randomizing, all else
constant.
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Using the example in Table B1, the inputs to the standard error formula for Block 1 are:

V ar(Yi(0))1 = .25, V ar(Yi(1))1 = .25, Cov(Yi(0)1, Yi(1))1 = .25, and N = 2. Notice how the

variation in potential outcomes within the block is much smaller than when considering the

entire sample. Taken together, SE(ÂTE1) = 1. Likewise, for Block 2, V ar(Yi(0))2 = .25,

V ar(Yi(1))2 = .25, Cov(Yi(0)2, Yi(1))2 = .25, N = 2, and SE(ÂTE2) = 1. Under block ran-

domization with N = 4, SE(ÂTE) = 0.71. In this example, perhaps counterintuitively, even

though the sample size is halved, the researcher would rather implement block randomization

because the precision gains in doing so outweigh the costs associated with sample loss.
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C. Estimators for Block-Randomized Experiments

In this Appendix, we discuss alternative estimators for block-randomized experiments. First

consider the most common approach in the literature. In a block randomized experiment, the

researcher conducts independent experiments in each block and then aggregates their ATE

estimates into a single number summary. This aggregation involves computing a weighted

average of the estimates across blocks, the main article text describes the block-size weights

estimator as the preferred approach in the literature due to its unbiasedness (Humphreys

2009; Gibbons, Serrato, and Urbancic 2018).

However, one could also use precision or harmonic weights (Gerber and Green 2012) according

to the following estimator:

ÂTEPrecision = 1
B

B∑
b=1

1
hb

ÂTEb. (1)

With hb = nbpb(1 − pb), with pb as the proportion treated units in block b. As the name

suggests, precision weights take into account the proportion of treated units across blocks,

whereas block-size weights only consider the size of each block. Using precision weights is

equivalent to using block fixed effects or controlling for blocks in OLS regression.

Which weighting scheme is more appropriate? Bowers, Diaz, and Grady (2022) use simulations

to argue that the choice of weighting scheme is consequential when the proportions of treated

units across blocks correlate with potential outcomes across blocks. In this case, precision

weights may lead to biased yet more precise estimates, which may be preferable when the

goal is to distinguish an effect from zero. Throughout the main article text, we assume equal

proportions of treated units across blocks, so the choice of estimator is trivial.
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D. Estimators for Pre-Post Designs

The main text introduces pre-post designs using the differencing approach, and in this

Appendix, we outline an alternative estimator for the ATE. When using a differencing

approach, the estimator for the ATE is equivalent to that of a standard design, except that

the outcome variable is now the change score is the difference between individual observed

outcomes before and after treatment. This is equivalent to using pre-treatment covariates to

rescale outcomes, or the difference in differences (Gerber and Green 2012, chap. 4.1).

An alternative approach to analyze data from a pre-post design is to use pre-treatment

outcomes as control variables in regression. From this point of view, analyzing experiments

with pre-post designs is no different from incorporating covariates in an experiment to enhance

precision (Gerber and Green 2012, chap. 4.2; Bowers 2011; Lin 2013).

In this case, the expression

Yi = β0 + β1Zi + β2Xi (2)

can be used in OLS regression to estimate the average treatment effect β1 of binary treatment

Zi on outcome Yi. Controlling for covariate Xi, which in this case corresponds to a vector

recording pre-treatment or baseline outcomes. Chapter 4 of Gerber and Green (2012)

illustrates the correspondence between the change score and covariate adjustment approaches

in pre-post designs.

Using pre-treatment outcomes has two advantages. First, as in our application to Anspach

and Carlson (2020), one can control for a proxy of pre-treatment outcomes in cases where

measuring pre-treatment outcomes is not feasible. Clifford, Sheagley, and Piston (2021) call

this a quasi-pre-post design. In our case, the outcome of interest was how much respondents

trusted the result of a poll presented in a survey experimental vignette. This outcome does

not make sense before the experimental stimuli is presented, so one could not calculate change

10



scores in this case.

The second advantage of the covariate adjustment approach is that, much like the precision-

weighting approach to block randomization, it can yield biased yet more precise estimates of

the ATE than change scores (Freedman 2008). This bias comes from the fact that regression

adjustment assumes that the pre-treatment outcome is uncorrelated with the error term,

whereas the change score estimator does not (Allison 1990). Lin (2013) argues that in most

cases the bias is negligible and that using robust standard errors yields asymptotically valid

confidence intervals when using the conventional OLS standard errors hurts precision.
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E. Non-Random Sample Loss

In this Appendix, we expand on the article’s discussion of non-random sample loss. To

facilitate exposition, the application and simulation in the main article text assume that

sample loss happens at random. This implies that choosing to invest in block randomization

or a pre-post design depends only on the tradeoff between statistical precision and sample

retention. However, if sample loss were to systematically affect some units over others, then

one should worry about the possibility of alternative designs inducing bias in the estimation

of average treatment effects.

In this context, sample loss is equivalent to attrition or missing outcomes, which can induce

bias in two ways. First, attrition may turn representative samples into non-representative

samples, which challenges external validity. Our paper is not concerned with external validity

since we focus primarily on strategies to improve statistical precision to enhance internal

validity. We direct readers to Findley, Kikuta, and Denly (2021), Egami and Hartman (2022),

and Lo, Renshon, and Bassan-Nygate (2023) for recent treatments on the subject. The

general advice there applies to the research designs we discuss as well.

Second, sample loss may induce bias when it correlates with potential outcomes, meaning

that the pattern of missing outcomes may correlate with how units respond to treatment (Lo,

Renshon, and Bassan-Nygate 2023). This is a problem for navigating the balance between

precision and retention when the bias would appear under an alternative design, but not

under the standard design.

This form of correlated attrition would happen in our setting when collecting pre-treatment

data on outcomes or blocking covariates leads units to abandon the study after randomization

with higher frequency in some experimental conditions over others. Which is not a problem

for implicit sample loss since in that case the costs are internalized by the researcher, missing

outcomes are hypothetical, and treatment assignment happens after measuring outcomes.
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Correlated attrition can be a problem for studies in which explicit attrition is a concern.

For example, the measurement of pre-treatment variables in a single wave survey may alert

respondents to the topic of the study, which may lead them to engage with experimental

vignettes differently and, in turn, to attrit at different rates across treatment and control

conditions.

This turns the problem from a balance of precision and retention into a bias-precision-retention

tradeoff, which complicates the choice of optimal experimental design even further. One can

be in a position where an alternative design suggests considerable improvements in statistical

precision while inducing non-negligible bias. This implies getting estimates that are more

consistent yet further away from the true ATE.

To illustrate how to incorporate bias concerns into the balance, we simulate experiments in

a similar fashion to section main text. However, we only consider the post-only standard

and post-only block randomized experiment as alternatives. We ignore pre-post designs here

since one would not expect pre-treatment outcomes to affect potential outcomes, whereas

one usually chooses to block randomizes on covariates that are highly predictive of potential

outcomes. However, the exercise here should also apply to pre-post designs.

The setup is identical to that described in section 5, except that now we assume that sample

loss happens in only one of the two blocks. This would be the most straightforward way in

which measuring pre-treatment covariates for block randomization may induce bias through

sample loss. Furthermore, we allow the true treatment effect τ to vary across blocks to show

how the problem only emerges when sample loss correlates with potential outcomes. We

consider two scenarios for τ = (0.2, 0.2) and τ = (0.3, 0.1). Since units are distributed evenly

across blocks, the true average treatment effect is the same for the entire sample, but sample

loss will only correlate with potential outcomes in the second example.

Figure E1 shows the power and bias of the four possible combinations of research designs

and treatment effect patterns over a range of sample loss rates. The left panel shows how
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power changes as a function of sample loss. The block randomized experiment is generally

more precise than the standard experiment, this is because the underlying blocking covariate

is always correlated to potential outcomes.

Power
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Figure E1: Statistical power and bias for simulated experiments along sample
loss rate
Note: Each point along the horizontal axis is based on 1,000 simulated experiments.

Because potential outcomes do not correlate with sample loss under the first pattern of

treatment effects τ = (0.2, 0.2), the block randomized experiment still retains high power at

high degrees of sample loss, this is because the one block that does not drop observations

still retains a sufficiently large sample size.

Power only suffers under the pattern of treatment effects that correlates with sample loss,

τ = (0.3, 0.1). This is because more and more units from the first block are being dropped,

which according to the right-hand side panel leads to increasing absolute bias in the estimation

of the overall ATE.

In this stylized simulation, the improvement in statistical precision is justifiable even at the

cost of sample loss and bias. For example, under the second pattern of treatment effects,

losing about 40% of the observations in the first block leads to a bias slightly above of 0.02
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standard deviations in the standard normal outcome.

While the decision of how much bias to tolerate will depend on the specifics of each application,

the simulation exercise here suggests that, in general, one should not worry about correlated

sample loss when choosing alternative designs any more than one should worry about potential

bias from attrition in general.
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